|
META TOPICPARENT |
name="ClicBpm" |
Numerical Analysis of the Fundamental Frequencies
This is a method of measuring the frequency with higher resolution than with just a standard discrete fourier transform: |
|
< < | %BEGINLATEX%\begin{equation*} |
> > | %BEGINLATEX%
\begin{displaymath} |
| X(k/N)=\sum_{n=0}^N x(n)\exp\left( j\frac{2\pi k}{N} n \right) |
|
< < | \end{equation*}%ENDLATEX% |
> > | \end{displaymath}
%ENDLATEX% |
|
which is at maximum amplitude for resonant frequency . Numerical analysis can be performed about the resonant frequencies measured by the fourier transform: |
|
< < | %BEGINLATEX%\begin{equation*} |
> > | %BEGINLATEX%
\begin{displaymath} |
| X(f)=\sum_{n=0}^N x(n)\exp(j 2\pi f n) |
|
< < | \end{equation*}%ENDLATEX% |
> > | \end{displaymath}
%ENDLATEX% |
|
where f is in the range . The frequency for which, this is a maximum is a more precise measure of the resonant frequency than with the fourier transform alone. |
|
--> |
|
> > |
META FILEATTACHMENT |
attachment="latex9da7f5542f7945e9be84ace7424973df.png" attr="h" comment="" date="1415026626" name="latex9da7f5542f7945e9be84ace7424973df.png" user="ztap061" version="1" |
META FILEATTACHMENT |
attachment="latex7ab3dd6badf371bb4d5194388463010f.png" attr="h" comment="" date="1415026702" name="latex7ab3dd6badf371bb4d5194388463010f.png" user="ztap061" version="1" |
META FILEATTACHMENT |
attachment="latex7af58a1508c8d9535755f85e54127385.png" attr="h" comment="" date="1415026702" name="latex7af58a1508c8d9535755f85e54127385.png" user="ztap061" version="1" |
META FILEATTACHMENT |
attachment="latex1cf1c27c43457c79ff4a34cfc6d83555.png" attr="h" comment="" date="1415026703" name="latex1cf1c27c43457c79ff4a34cfc6d83555.png" user="ztap061" version="1" |
|