Quantum Dynamics of a System of Interacting Fermions

Albert Trieu

Supervisor: Dr Grégoire Ithier

Abstract

This was a coding based project to numerically initialise and evolve a system of interacting fermions, with a number of occupiable single-body states and associated energies. The Hamiltonian matrix of many-body states and a random interaction matrix were formed and added together. Components for time evolution were evaluated. The system was then evolved from a chosen initial state and the results were analysed.

Overview of System				
	Hamiltonian dimension $N = 2^b = 1024$			
	• Number of energy levels $b = 10$, each labelled by number k	Hamiltonian dimension		$k = 9$, $E_9 = 1.745$ $k = 8$, $E_8 = 1.624$
	• 0 or up to 1 fermion/	<i>N</i> = 1024		$k = 7$, $E_7 = 0.865$
	electron can occupy			$k = 6$, $E_6 = 0.319$
	each level (Pauli	b = 10 energy levels		$k = 5$, $E_5 = -0.249$ $k = 4$, $E_4 = -0.528$

Forming the Total Hamiltonian

The bare Hamiltonian H_0 was formed, a diagonal matrix containing all many-body energy states.

This was sorted/permuted into states that share the same fermion number and in ascending energy, and the matrix for ¹⁰⁰ fermion number m = 5 was extracted.

A random interaction matrix W was formed using values taken from a Gaussian distribution, and interaction strength set to $\sigma_W = 1$. The total Hamiltonian was formed: $\hat{H} = H_0 + W$

ROYAL

HOLLOWAY

(B) The total Hamiltonian for system with 5 fermions (sorted in ascending energies)

Obtaining components for time evolution

The main objective is to simulate the expectation value of occupation number at the kth level (over time): The components required for this and time evolution are:

$$\langle n_k \rangle = \operatorname{Tr} \left(C_k^{\dagger} C_k |\psi(t)\rangle \langle \psi(t)| \right)$$

Number Operator

A diagonal matrix containing value 0/1 where the level k is unoccupied/occupied in a many-body state.

Initial State

Any many-body state in the Total Hamiltonian could be set to be the initial state at time t=0. (D) displays three of these (filling top, bottom, and middle five levels).

Evolution Operator & Time Step

The eigenvalues and eigenvectors of \hat{H} were used to compute the evolution operator:

$$U_t = e^{-i\hat{H}t}$$

The time step Δt used was found using Fermi's Golden rule. DOS is a quantity referring to the density of

Resulting Dynamics

The three initial states as in (**D**) were used to observe the dynamics. The results are in (**E**). State 0: dynamics seem frozen, except for levels *k* = 4 and 5, which seem to oscillate. State 126: all levels seem to be occupied throughout time. State 251: the dynamics seem frozen, as the top five levels remain occupied, and the bottom five unoccupied over time. It can be concluded from this result that the dynamics have a dependence on the initial state.

(E) Dynamics observed from initial states of indexes 0, 126, 251

Conclusion

A code was produced to numerically produce a system of fermions with random interactions occupying k single-particle states. Matrices for the Total Hamiltonian were formed, from which the components of time evolution were computed. With this, the dynamics over time of chosen initial states were simulated.